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Surface energy of biaxial nematics

HONG LIU

Department of Physics, Nanjing Normal University, Nanjing 210097, PR China;
e-mail: hliu-njnu@hotmail.com

(Received 20 October 1999; in � nal form 16 February 2000; accepted 22 February 2000 )

In this paper, a form of surface energy for biaxial nematics is derived. The methods follow
those for deriving Landau elastic energy Frank elastic energy for bulk nematics. The surface
energy can also be derived in rotation matrix expansion. The result shows that in the � rst
order approximation, there are four independent coeYcients in the surface energy. When each
of the three orthogonal directors of biaxial nematics coincides with its corresponding easy
axis, the surface energy is linearly proportional to the order parameters. An application of
this surface energy is discussed and possible experimental measurements of three linear
combinations of the four coeYcients are explored.

1. Introduction Because both the deviation of directors from easy
axes and the degree of molecular orientation along theThe surface energy of a nematic liquid crystal has
directors contribute to the surface energy, it is necessarybeen used in all problems involving weak anchoring
to � nd a general form of surface energy for biaxialboundary conditions. The interaction between the liquid
nematics in terms of order parameters and relativecrystal and a con� ning surface gives rise to a surface
orientation of directors with respect to easy axes. In theenergy in a form � rst suggested by Rapini–Papoular
following sections, we will � rst use a similar approach[1]. For homeotropic alignment, it was proposed that
to that used in Landau theory [6] to form a rotationalthe surface energy has the form W sin2 h/2, where W is the
invariance for the surface energy where the anchoringpolar anchoring strength in units of energy density, and
strengths depend on the order parameters. Then a similarh is the polar angle the director n makes with the easy
method to that used in Frank elastic theory [7] will beaxis n0 . For homogeneous alignment, de Gennes [2]
employed in deriving another form of surface energy.used a similar expression, i.e. Fs=1/2 W h2 where W is
The validity of these forms is further checked by athe azimuthal anchoring strength, and h is the angle the
rotation matrix series expansion. These two forms ofdirector in the surface plane makes with the easy axis.
surface energy will be compared and possible experi-In the computer simulation of � nger-print texture of
mental measurements for the anchoring strengths willcholesteric liquid crystal induced by an external � eld,
be explored.Shiyanovskii and Lavrentovich [3] used a surface

energy in a generalized Rapini form, Fs= - 1/2 Wijninj ,
2. Theoryto describe a pretilt angle as well as diVerent polar and

Consider a triad of orthogonal director � elds of aazimuthal anchoring. Here the repeated index means
biaxial nematic liquid crystal a, b and c. In the boundarysummation.
surface, suppose three orthogonal easy axes are denotedApart from the forms that describe the deviation of
by a0 , b0 and c0 respectively. In weak anchoring con-the director from the easy axis in uniaxial nematics,
ditions, the relative orientations of directors a, b and cother forms of surface energy related to the order
with respect to a0 , b0 and c0 can be realized by threeparameter have been suggested. Sheng [4] and other
rotations in the following order:authors [5] used the expression - GS for surface energy,

where G is a constant denoting the strength of the
(1) rotation of angle wa around a0 axis (04wa<2 p );

potential felt by each molecule and S= áP2 (cos h) ñ .
(2) rotation of angle wb around b0 axis (04wb< p );

When G>0 (or G<0) the long molecular rods tend to
(3) rotation of angle wc around c0 axis (04wc<2 p ).

align parallel (or perpendicular) to the director. In this
type of expression, the director is assumed to be along Note the angles wa , wb and wc are not Euler angles. The

bene� t of using this system of rotations is that when thethe easy axis.
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1514 H. Liu

directors’ deformation involves only one of the rotations, When a, b, and c coincide with a0 , b0 , and c0 respectively,
neglecting the higher order terms, the surface energy isthe result can be expressed in a single angle, while in

Euler angles two may be involved. linearly proportional to the order parameters. The proof
is as follows. For a rod-like molecule, suppose the longIn the a0 , b0 , c0 system, in terms of wa , wb , and wc ,

directors a, b and c can be expressed as axis of molecule in the a0 , b0 , c0 system is oriented with
polar and azimuthal angles h and w, respectively. The
microscopic surface energy Fm

s in general is a function
of h and w. Expanding Fm

s in a series of sphericalAa

b

c
B= A cos wc cos wb

cos wc sin wb sin wa - sin wc cos wa

cos wc sin wb cos wa+sin wc sin wa
harmonics Ylm (h, w), we have

Fm
s (h, w)= å

l 0
å
l

m l
almYlm (h, w). (3)sin wc cos wb

sin wc sin wb sin wa+cos wc cos wa

sin wc sin wb cos wa - cos wc sin wa

- sin wb

cos wb sin wa

cos wb cos wa
BAa0

b0

c0
B Neglecting higher order terms of l 3 and considering

the fact that Fm
s is real, we have a22=a2 2 , a11= - a1 1 .

Suppose the unit vector along the long axis of rod-like
molecule is n (it is not the director of uniaxial nematics).
For the macroscopic surface energy Fs= áFm

s (h, w) ñ=U(wa , wb , wc )Aa0

b0

c0
B . (1)

where á ñ represents the thermal average, it must be
invariant under the reversion of nx ! - nx (i.e. w ! p - w).
Therefore it gives a11=0 andWhile in terms of Euler angles (a, b, c)

Fs=a20 A 5
4 p B1/2

áP2 (cos h) ñAa

b

c
B= A cos a cos b cos c - sin a sin c

- cos a cos b sin c - sin a cos c

cos a sin b +a22 A 15
32 p B1/2T3

2 sin2 h cos 2wU
ª a20 A 5

4 p B1/2
S+a22 A 15

32 p B1/2
P (4)

sin a cos b cos c+cos a sin c

- sin a cos b sin c+cos a cos c

sin a sin b

- sin b cos c

sin b sin c

cos b
BAa0

b0

c0
B

where

S= áP2 (cos h) ñ , P=T3

2 sin2 h cos 2wU .ª U(a, b, c)Aa0

b0

c0
B . (2)

Generally, for a rigid molecule of arbitrary shape,
The surface energy must satisfy the following require- three orthogonal unit vectors l, m, n are linked to the

ments: (1) the energy must be rotational invariant; (2) the molecules. In Euler angles, l, m, n can be expressed as
states of molecular orientation near the surface are
indistinguishable for a and - a, or b and - b, or c and
- c. Therefore the surface energy must be invariant A l

m

n
B=U(a, b, c)Aa0

b0

c0
B (5)under each of the following six operations: (1) a ! - a,

(2) b ! - b, (3) c ! - c, (4) a0 ! - a0 , (5) b0 ! - b0 , and
(6) c0 ! - c0 . Consequently, there will be no linear terms
and cross terms such as a, a × b etc. The terms like (a × b)c where U(a, b, c) is given by equation (2). Since the
satisfy this requirement since (a × b)c= (a × b) (a×b), yet microscopic surface energy is a function of Euler angles,
it is not a rotational invariant and therefore should be it can be expanded into a series of rotation matrices, i.e.
disregarded. This requirement is the same one used in
deriving Frank elastic energy for the bulk uniaxial Fm

s (a, b, c)= å
j 0

å
j

m ¾ j
å
j

m j
Aj

m¾ mD(j)
m ¾ m (a, b, c)

nematics [2]. The same symmetry property in Saupe’s
elastic energy for biaxial nematics is also assumed [8]
(see equation (30) for the form of elastic energy of biaxial = å

j 0
å
j

m¾ j
å
j

m j
Aj

m ¾ m exp ( - im ê a)
nematics). The surface energy, Fs= - 1/2 Wijninj used in
[5] also satis� ed this requirement. ×dj

m¾ m (b) exp ( - imc) (6)
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1515Surface energy of biaxial nematics

where The order parameter matrix elements are

dj
m ¾ m (b)=[( j+m)!( j - m)!( j+m ê )!( j - m ê )!]1/2

Q(d)
ab

=All
1
2

á3l
a
l
b

- dab
ñ +Amm

1
2

á3m
a
m

b
- dab

ñ

× å
k

( - 1)k
( j - mê - k)!( j+m - k)!(k+m ê - m)!k!

+Ann
1
2

á3n
a
n
b

- dab
ñ

× Acos
b

2B2j m m ¾ 2kA - sin
b

2Bm¾ m 2k
.

=
3
2

(Ann - A)Q(0d)
ab

+
1
2

(All - Amm )T (d)
ab (11)

(7)

where Aii(i= l, m, n) are three diagonal polarizabilityThe macroscopic surface energy is the thermal average
elements in the l, m, n system, A= (All+Amm+Ann )/3 isof Fm

s (a, b, c). Neglecting higher order terms of j 3, we
its average, Q(0d) and T (d) are the diagonalized matriceshave
where Q(0d)

11 = - (S - P)/2, Q(0d)
22 = - (S+P)/2, Q(0d)

33 =S,
T (d)

11 = (D - C)/2, T (d)
22 = - (D+C)/2, T (d)

33 =D; S, P, D,
Fs=T å

j 0,1,2
å
j

m¾ j
å
j

m j
Aj

m ¾ m and C are given by equation (10 b). Comparing equations
(10 a) and (11), we have a surface energy as a linear

combination of order parameters S, P, D, and C for the
×exp ( - im ê a)dj

m ¾ m (b) exp ( - imc)U . (8)
arbitrary shaped molecule. When All=Amm , the order
parameter matrix Q(d)=Q(0d) and the system have only

two order parameters S and P. When All Amm , weUnder the operation of a0 ! - a0 , b0 ! - b0 (i.e.
have two independent order parameter matrices Q(0d)a ! a+ p ) and l ! - l, m ! - m (i.e. c ! c+ p ), the
and T (d).surface energy should be invariant. Therefore we have

When a, b, and c are rotated away from a0 , b0 , andall the coeYcients of j=odd, m ê =odd, m=odd equal to
c0 , in the a0 , b0 , c0 system, the order parameter matriceszero. Since Fs is real and invariant under the operation
becomeof l ! - l, n ! - n (i.e. b ! p - b, a ! a+ p , c ! p - c),

we have
Q0

ij=Uia
Ujb

Q(0d)
ab

, Tij=Uia
Ujb

T (d)
ab (12)

A2
20=A2

20 , A2
0 2=A2

02 ,

A2
2 2=A2

22=A2
22=A2

2 2 .
(9) where Uia=ei × ea are given by equations (1) and (2).

Here e1=a, e2=b, e3=c, e1=a0 , e2=b0 , e0=c0 .

Generally, since the surface energy is a function of Q(0)
Therefore Fs can be simpli� ed as

and T , it can be expanded into Taylor series of Q0
ab and

T
ab . Keeping only the linear terms, and considering the

requirement (1), we haveFs=A2
00 áP2 (cos b) ñ +

ã 6
2

A2
02 ácos 2a sin2 b ñ

Fs=VjiQ
0
ij+WjiTij (13)

+
ã 6
2

A2
20 ácos 2c sin2 b ñ

where V and W are the second rank tensor coeYcients.
Rewriting V as+A2

22 á (cos2 b+1) cos 2a cos 2c

- 2 cos b sin 2a sin 2c ñ
Vij=

1

2
(Vij+Vji )+

1

2
(Vij - Vji ) ª V (S)

ij +V (A)
ij (14)

=A2
00S+

ã 6
3

A2
02P+

ã 6
3

A2
20D+

2
3

A2
22C (10 a)

where V (S) is a symmetric matrix, V (A) is anti-symmetric

matrix. Similarly, we can write W = W (S) + W (A) .
where

Substituting V and W into equation (12), we have

Fs=V (S)
ji Q(0)

ij +V (A)
ji Q(0)

ij +W (S)
ji Tij+W (A)

ji Tij . (15)S=
1
2

á3n2
z - 1 ñ , P=

3
2

án2
x - n2

y ñ

D=
3
2

á l2z - m2
z ñ , C=

3
2

á l2x - l2y - m2
x+m2

y ñ .
Since V (A)

ji Q0
ij= - V (A)

ij Q0
ij= - V (A)

ij Q0
ji , we have V (A)

ji Q0
ij=0.

Similarly W (A)
ji Tij=0. Therefore Fs can be written as

Fs=V (S)
ji Q0

ij+W (S)
ji Tij . (16)(10 b)
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1516 H. Liu

That means we can always choose two symmetric matrices In order to compare this form of surface energy with
as coeYcient matrices. Dropping the superscripts and that in § 2, we write Fs as
bearing in mind that V and W are symmetric, we can

F(1)
s =3(v11Q0

11+w11T11 )+[(v22 - v11 ) (Q0
22 - Q0

11 )simply write Fs=VjiQ
0
ij+WjiTij .

Subtracting +(w22 - w11 ) (T22 - T11 )] (b × b0 )2

+[(v22 - v11 )(Q0
33 - Q0

11 )(V11+V22+V33 )dijQ
0
ij/3+(W11+W22+W33 )dijTij/3=0

+(w22 - w11 ) (T33 - T11 )] (c × b0 )2
from equation (16), we have

+[(v33 - v11 )(Q0
22 - Q0

11 )

+(w33 - w11 ) (T22 - T11 )] (b × c0 )2Fs=AVij -
1
3 å

k
VkkdijBQ0

ij+AWij -
1
3 å

k
WkdijBTji

+[(v33 - v11 )(Q0
33 - Q0

11 )
ª vijQ

0
ij+wijTji (17)

+(w33 - w11 ) (T33 - T11 )] (c × c0 )2. (21)

where v and w are traceless tensors. Therefore there are
Here the superscript d in the Q0 and T matrix is dropped.

only � ve independent coeYcients for each matrix.
Comparing equations (20) and (21), we � nd that if

Substituting equation (12) into (17) we have

Fs=vijUia
Ujb

Q(0d)
ab

+wijUia
Ujb

T (d)
ab

. (18)
g1= (v22 - v11 ) (Q0

22 - Q0
11 )+ (w22 - w11 ) (T22 - T11 )

g2= (v22 - v11 ) (Q0
33 - Q0

11 )+ (w22 - w11 ) (T33 - T11 )

g3= (v33 - v11 ) (Q0
22 - Q0

11 )+ (w33 - w11 ) (T22 - T11 )

g4= (v33 - v11 ) (Q0
33 - Q0

11 )+ (w33 - w11 ) (T33 - T11 )

Since Fs is a function of a, b, c and is invariant under
the operation of c ! c+ p (i.e. a ! - a and b ! - b),
b ! p - b, a ! a+ p , c ! p - c (i.e. a ! - a, c ! - c),
we have the oV-diagonal elements of v and w equal to

(22)
zero. Therefore there will be only two independent
elements for v and two for w. F(1)

s and F(2)
s will diVer only by a constant. Notice

Note that when a, b, and c coincide with a0 , b0 , that in both F(1)
s and F(2)

s , there are four independent
and c0 , respectively, the surface energy is linearly pro- coeYcients.
portional to the order parameters S, P, D, and C, The surface energy can also be derived by expanding
as shown in equation (10 a); we found that a0 , b0 , and it into a series of rotation matrices Dj

m¾ m (abc) given by
c0 are the three eigenvectors in which the symmetric

equations (6) and (7)
matrices v and w are diagonalized.

Fs= å
j 0

å
j

m ¾ j
å
j

m j
Bj

m ¾ mDj
m ¾ m (abc). (23)

3. The second form of surface energy
If we do not consider the in� uence of order para- Neglecting all the higher terms of j 3, we have the

meters, we can form four independent rotational expansion
invariants:

Fs= å
j 0,12

å
j

m ¾ j
å
j

m j
Bj

m ¾ mb0ib0jbibj , b0ib0jcicj , c0ic0jbibj , c0ic0jcicj .

(19) ×exp ( - imê c)dj
m ¾ m (b) exp ( - ima). (24)

Under the operation of a ! a+ p (i.e. a ! - a, b ! - b)Using aiaj=dij - bibj - cicj , a0ia0j=dij - b0ib0j - c0ic0j ,
other rotational invariants such as a0ia0jaiaj , a0ia0jbibj , and c ! c+ p , (i.e. a0 ! - a0 , b0 ! - b0 ), the surface
a0ia0jcicj , b0ib0jaiaj , c0ic0jaiaj can all be expressed as energy should be invariant. Therefore we have all the
the linear combination of the four independent invariants coYcents of j=odd, m ê =odd, m=odd equal to zero.
listed in expression (19). Obviously, cross terms such as Since Fs is real and invariant under operation of
b0ic0jbicj do not satisfy the requirement (2) and therefore b ! p - b, a ! a+ p , c ! p - c, (i.e. a0 ! - a0 , c0 ! - c0 ),
should be disregarded. we have

F(2)
s =g1 (b × b0 )2+g2 (c × b0 )2+g3 (b × c0 )2+g4 (c × c0 )2 B2

20=B2
20 , B2

0 2=B2
02 ,

B2
2 2=B2

22=B2
22=B2

2 2 .
(25)

(20)
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1517Surface energy of biaxial nematics

Therefore Fs is simpli� ed as substrate normal, resulting in a uniaxial surface layer

with negative orientation order at temperatures above

the bulk nematic–isotropic phase transition [5]. This
Fs=B2

00P2 (cos b)+
ã 6
2

B2
02 cos 2a sin2 b corresponds to the situation where v33>0. This type of

ordering leads to the possibility of phase transition from

uniaxial to biaxial nematics near the surface as the tem-
+

ã 6
2

B2
20 cos 2c sin2 b perature decreases. If v22 - v11 0, the surface provides

not only a mean � eld to align molecules perpendicular
+B2

22 [(cos2 b+1) cos 2a cos 2c to the surface normal, but also a biaxial � eld to produce

biaxiality.- 2 cos b sin 2a sin 2c]. (26)
Consider a liquid crystal con� ned between two parallel

plates where the upper and lower plates are at z=0, d.Meanwhile, according to equations (2) and (18), the
Suppose the easy axis of c0 is along the � lm normal andsurface energy in terms of Euler angles is
a0 , b0 are in the plane of the � lm. When the � lm thickness

approaches in� nity, the mid-plane directors will not beFs= å
i,j

(viiU
2
ijQ

(0d)
jj +wiiU

2
ijT

(d)
jj )

in� uenced by the boundary conditions. Minimizing the

bulk elastic free energy in Landau–de Gennes form and
=

3
2

(v33S+w33D)P2 (cos b)
the surface energy given by equation (29), we get the

Euler–Lagrange equations for the order parameters S (z)

and P (z) where z is the coordinate normal to the plane+
3
4

[S(v11 - v22 )+D(w11 - w22 )] cos 2c sin2 b
of the � lm. Since the equations do not have analytic

solutions, we use trial functions S (z; j, g), P(z; j, g) to

obtain the minimum free energy where j, g are the-
3

4
(Pv33+Cw33 ) sin2 b cos 2a

parameters to be optimized. The result shows that

the order parameter at the surface P (0) approaches
+

1
4

[P(v11 - v22 )+C(w11 - w22 )][(cos2 b+1) - 3S (0) (S (0)<0) for v11 - v22<0 and v33>0, when

either temperature decrease or the biaxial part of the
×cos 2a cos 2c - 2 cos b sin 2a sin 2c]. (27) surface energy coeYcient |v11 - v22 | increase. For details

of discussion and calculation see [9].
Comparing equation (26) with (27), we have

4. Possible experimental measurements of anchoring

strengths

When the rotation angles wa% 1, wb% 1, wc% 1, we

have

B2
00=

3

2
(v33S+w33D),

B2
02=

ã 6
4

[S(v11 - v22 )+D(w11 - w22 )]

B2
20= -

ã 6
4

(Pv33+Cw33 ),

B2
22=

1
4

[P(v11 - v22 )+C(w11 - w22 )].

(28) F(1)
s =v11Q0

11+v22Q0
22+v33Q0

33+w11T11+w22T22

+w33T33 - [(v22 - v33 ) (Q0
22 - Q0

33 )

+ (w22 - w33 ) (T22 - T33 )]w2
a

- [(v33 - v11 )(Q0
33 - Q0

11 )

When a=a0 , b=b0 , c=c0 and for rod-like molecules, + (w33 - w11 ) (T33 - T11 )]w2
b

equation (27) gives - [(v11 - v22 )(Q0
11 - Q0

22 )

+ (w11 - w22 ) (T11 - T22 )]w2
c . (30)Fs=

3
2

v33S+
1
2

(v11 - v22 )P. (29)

In the small angle approximation, neglecting a con-

stant, equation (30) can be derived in the followingIf v11=v22 , Fs=3v33S/2. It has been suggested that, for

an unrubbed polymer coated substrate with no preferred simple way. Suppose the rotation torque is linearly

proportional to the angular displacement vector, i.e.direction in the plane of the surface, the molecules of

the nematic liquid crystal may lie perpendicular to the L=Wawaa0+Wbwbb0+Wcwcc0 : the energy stored in the
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1518 H. Liu

� nal con� guration of wa , wb and wc is linearized as

F=P L × (dwaa0+dwbb0+dwcc0 )
Kbcwazz+DxcbH

2wa=0

Kbbwbzz=0

Kbawczz - DxbaH2wc=0

( ± Kbcwaz+Wawa )z d=0

( ± Kbbwbz+Wbwb )z d=0

( ± Kbawcz+Wcwc )z d=0.

(35)=
1
2

Waw2
a+

1
2

Wbw2
b+

1
2

Wcw
2
c . (31)

This form is similar to that of Rapini–Papoula and

therefore we call Wa , Wb and Wc the biaxial anchoring

strengths. The relation between Wa , Wb , Wc and vii , wii , Solving the equations, we obtain a transcendentalQ0
ii , Tii (i=1, 2, 3) can be easily obtained by comparing

equation from which the threshold � eld for the
equations (30) and (31). Fréedericksz transition can be found:

Consider a biaxial nematic con� ned between two

parallel plates at z= ± d. At the upper and lower
h tan h=

Wad
Kbc

(36)boundaries, assume the easy axes a0=x, b0=y, c0=z.

When a magnetic � eld H=Hx is applied and exceeds a

certain threshold value, there will be a Fréedericksz where h= (Dxcb/Kbc)
1/2Hd, Dxcb ª xcc - xbb . If the elastic

constant Kbc can be measured (for the possible experi-transition. According to Saupe [8], the elastic energy
mental measurements of � fteen elastic constants ofdensity of biaxial nematics is
biaxial nematics, see [10]), the value of Wa can be
determined if hF , the threshold � eld for Fréedericksz

Fe=
1
2 å

a
{Kaa[c × (a × = b)]2+Kab[b × (a × = a)]2

transition is measured.
Similarly, consider the geometry where a0= - y,

b0= - z, c0= - x, H=Hy. Then the diVerential equa-+Kac[c × (a × = a)]2+2Cab (a× = ×a)× (b× = ×b)
tions and boundary conditions are

+2K0a = × (a × = a - a = × a)} (32)

where the summation over a has three terms correspond-

Kbawczz+DxbaH2wc=0

Kbbwbzz+DxcaH
2wb=0

( ± Kbawcz+Wcwz )z d=0

( ± Kbbwbz+Wbwb )z d=0.

(37)ing to the cyclic permutation of a, b, and c. For example,
Sa f (a, b, c)= f (a, b, c)+ f (b, c, a)+ f (c, a, b). Kaa , Kbb ,
Kcc terms describe the directors b and c, c and a, a and

b rotating around a, b and c respectively. Kab , Kac , Kbc ,
The transcendental equations areKba , Kca and Kcb terms describe six simple distortion

patterns of bend and splay. Cab , Cbc , Cca are the coupling

terms with K0a , K0b , K0c contribute to the surface energy. h1 tan h1=
Wcd
Kba

, h2 tan h2=
Wbd
Kbb

(38)
The external � eld energy density is

where h1 = (Dxba/Kba )1/2Hd, h2 = (Dxca/Kbb )1/2Hd,
Dxba ª xbb - xaa , Dxca=xcc - xaa . If Kba , Kbb , Dxba andFex = -

1
2 å

a
xaa (H × a)2 (33)

Dxca are known, then by measuring the threshold � eld
of the Fréedericksz transition, we can determine either

where xaa , xbb , xcc are the three diagonal element of Wb or Wc , depending on which threshold � eld is lower.
magnetic susceptibility. For the sake of de� niteness, we

assume xcc>xbb>xaa . The surface energy density at
5. Summary

small angle approximation is given by equation (31).
In the present paper, we derive a form of surface

Therefore the total energy is
energy for biaxial nematics. The method is similar to
those used in deriving Landau elastic energy for bulk
nematics and Frank elastic energy. The same surfaceF=P (Fe+Fex ) dr+P Fs dS. (34)
energy can also be derived by rotation matrix expansion.
The result shows that there are four independent

At the vicinity of the lowest threshold � eld of coeYcients in the surface energy. One application of
surface energy when each of the three directors is alongFréedericksz transition, the Euler–Lagrange equation is
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