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In this paper, a form of surface energy for biaxial nematics is derived. The methods follow
those for deriving Landau elastic energy Frank elastic energy for bulk nematics. The surface
energy can also be derived in rotation matrix expansion. The result shows that in the first
order approximation, there are four independent coefficients in the surface energy. When each
of the three orthogonal directors of biaxial nematics coincides with its corresponding easy
axis, the surface energy is linearly proportional to the order parameters. An application of
this surface energy is discussed and possible experimental measurements of three linear
combinations of the four coeflicients are explored.

1. Introduction

The surface energy of a nematic liquid crystal has
been used in all problems involving weak anchoring
boundary conditions. The interaction between the liquid
crystal and a confining surface gives rise to a surface
energy in a form first suggested by Rapini—Papoular
[1]. For homeotropic alignment, itzwas proposed that
the surface energy has the form W sin 0/2, where W is the
polar anchoring strength in units of energy density, and
0 is the polar angle the director n makes with the easy
axis no. For homogeneous alignment, de_Gennes [2]
used a similar expression, ie. £s= 12W0* where W is
the azimuthal anchoring strength, and 0 is the angle the
director in the surface plane makes with the easy axis.
In the computer simulation of finger-print texture of
cholesteric liquid crystal induced by an external field,
Shiyanovskii and Lavrentovich [3] used a surface
energy in a generalized Rapini form, £s= —1/2 Winin;,
to describe a pretilt angle as well as different polar and
azimuthal anchoring. Here the repeated index means
summation.

Apart from the forms that describe the deviation of
the director from the easy axis in uniaxial nematics,
other forms of surface energy related to the order
parameter have been suggested. Sheng [4] and other
authors [ 5] used the expression — GS for surface energy,
where G is a constant denoting the strength of the
potential felt by each molecule and S= (P2(cos 0)).
When G >0 (or G <0) the long molecular rods tend to
align parallel (or perpendicular) to the director. In this
type of expression, the director is assumed to be along
the easy axis.

Because both the deviation of directors from easy
axes and the degree of molecular orientation along the
directors contribute to the surface energy, it is necessary
to find a general form of surface energy for biaxial
nematics in terms of order parameters and relative
orientation of directors with respect to easy axes. In the
following sections, we will first use a similar approach
to that used in Landau theory [6] to form a rotational
invariance for the surface energy where the anchoring
strengths depend on the order parameters. Then a similar
method to that used in Frank elastic theory [7] will be
employed in deriving another form of surface energy.
The validity of these forms is further checked by a
rotation matrix series expansion. These two forms of
surface energy will be compared and possible experi-
mental measurements for the anchoring strengths will
be explored.

2. Theory

Consider a triad of orthogonal director fields of a
biaxial nematic liquid crystal a, b and c. In the boundary
surface, suppose three orthogonal easy axes are denoted
by ao, bo and co respectively. In weak anchoring con-
ditions, the relative orientations of directors a, b and ¢
with respect to ao, bo and co can be realized by three
rotations in the following order:

(1) rotation of angle ¢« around ao axis (0 < ¢a < 27);
(2) rotation of angle ¢» around bo axis (0 < ¢» <T);
(3) rotation of angle ¢c around co axis (0 < ¢e < 27),

Note the angles ¢a, ¢» and ¢ are not Euler angles. The
benefit of using this system of rotations is that when the
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directors’ deformation involves only one of the rotations,
the result can be expressed in a single angle, while in
Euler angles two may be involved.

In the ao, bo, co system, in terms of ¢a, ¢p, and ¢c,
directors a, b and ¢ can be expressed as

a COS (pe COS b
b | = cos ¢c sin ¢b sin ¢pa ~ sin Pe cos Pa
c COS (e sin ¢b cos ¢pa + sin Pe sin ¢pa
sin ¢e cos ¢b —sin ¢» a0

sin ¢e sin ¢b sin ¢a + cos @ cos Pa  cos ¢b sin ¢a || bo

Sin ¢e sin ¢p cos Pa ~ COS Pc sin Pa  cOS Pp COS Pa | \¢o

a0

= Ulas o> o) | bo |- (1)

co

While in terms of Euler angles («, f3, 7)

a cos o cos ffcosy ~sinasiny
b |=| ~cosacosfsiny ~sinacosy
c cos o sin f§

sinazcos fcosyt+cosasiny  ~sinficosy\ fao

~sinocos fsiny+cosacosy sinfsiny bo
sin o sin f§ cos f co
a0
= U(OC’ ﬁ’ 'y) bO . (2)
co

The surface energy must satisfy the following require-
ments: (1) the energy must be rotational invariant; (2) the
states of molecular orientation near the surface are
indistinguishable for a and —a, or b and —b, or ¢ and
—c. Therefore the surface energy must be invariant
under each of the following six operations: (1) a > —a,
(2)b— =b,(3) ¢~ —¢,(4) a0 > —ao, (5) bo > —bo, and
(6) co = —co. Consequently, there will be no linear terms
and cross terms such as a, a* b etc. The terms like (a* b)c
satisfy this requirement since (a° b)c=(a" b)(a X b), yet
it is not a rotational invariant and therefore should be
disregarded. This requirement is the same one used in
deriving Frank elastic energy for the bulk uniaxial
nematics [2]. The same symmetry property in Saupe’s
elastic energy for biaxial nematics is also assumed [8]
(see equation (30) for the form of elastic energy of biaxial
nematics). The surface energy, £s = —1/2 Wijnintj used in
[5] also satisfied this requirement.

When a, b, and ¢ coincide with a0, bo, and co respectively,
neglecting the higher order terms, the surface energy is
linearly proportional to the order parameters. The proof
is as follows. For a rod-like molecule, suppose the long
axis of molecule in the ao, bo, co system is oriented with
polar and azimuthal angles 0 and ¢, respectively. The
microscopic surface energy £ s in general is a function
of 0 and ¢. Expanding Fs in a series of spherical
harmonics Yim(0, ¢), we have

1
= 2 2 alrnYlm(0’¢)' (3)

=0 m=-—1

Neglecting higher order terms of /2 3 and considering
the fact that Fs is real, we have d22 =d2—2 di1 = —di—-1,
Suppose the unit vector along the long axis of rod-like
molecule is n (it is not the director of uniaxial nematics).
For the macroscopic surface energy Fs= <F§“((), (/)))
where () represents the thermal average, it must be
invariant under the reversion of 7x — ~7x (ie. ¢ = T ~ §).
Therefore it gives @11 =0 and

5 1/2
Fs = axo (E) <P2(COS 0))
15\”?/3 ,
+a2| 3o 5 sin” 0 cos 2¢
5 1/2 15 2
5“20(4?) S+azz(32) P (4)
where

3 2
S=(Pxcos 0)), P= <5 sin 0 cos 2(/)>

Generally, for a rigid molecule of arbitrary shape,
three orthogonal unit vectors 1, m, n are linked to the
molecules. In Euler angles, I, m, n can be expressed as

1 a0
m |=Ule g:9)] bo (5)
n Cco

where U(a, ,7) is given by equation (2). Since the
microscopic surface energy is a function of Euler angles,
it can be expanded into a series of rotation matrices, i.e.

Jj

T py)= 2 X 2 A Dt s )

Jj=0m'==jm=—j

= 2 2 Am/mexp i's)

J=0m=—j m=—j

X dm/m(/)’)exp(_imy) (6)
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where

ol ) = L0+ m(j = m)(j 4 m)(j = m ]

(=1)F
xZ]

m = ) j 4+ m = ) + m' — m)ly!

2j+m—mr— 2 m—m+ 2
X (COS g) (_sin g) .

(7)

The macroscopic surface energy is the thermal average
of F5 (a, B, ). Neglecting higher order terms of / = 3, we
have

S S 3 M

j=012 m=—j m=—j

x exp (= im'e)dm( ) exp(—imy)>~ (8)

Under the operation of ao— —ao, bo— —bho (ie.
a—>o+T) and 1= ~I, m— —m (i.e. y—>y+T7), the
surface energy should be invariant. Therefore we have
all the coefficients of / = odd, "' = odd, M = odd equal to
zero. Since £ is real and invariant under the operation
ofl-> “Ln— "n(ie o[, a>a+Typ>T 1),
we have

2 2 2 2
A—20=A20, AO—ZIAOZ,

9
A s s A5y — Al rs — A5, ©)

Therefore £ can be simplified as

6
Fy = 450 (P2 (cos B+ \/TA?H (cos 2o sin’ i

6A2 L2
+75 20 {cos 2y sin /)’)
+ 432 {(cos” p+1) cos 2o cos 2y
— 2 cos f sin 2o sin 2y)
= A0S —EAZP —EAZD EYENe
_00+302 +3 20 —|—322 (10a)

where

3
), P=>(nt-nl)

S 1<32
=5\ 2

3
D:-(Zﬁ—mi), C:E<Z§—Z§—m§+m§).

(10 b)

The order parameter matrix elements are

1
04 — Au (3Ll = 5ap) + Amn (3 = 5,)

1
+ A""E <3”a”p - &g)

3 _ 1
=5 (A = D)0 + 5 (Au = AT 3y (11)

where Aii(i=1[m n) are three_diagonal polarizability
elements in the l m, n system A= (Au+ Amwm + Aun)/3 is
its avera oA 0 and T are the diagonalized matrlces
Where Q11 = —(S P)/z Q22 = (S+P)/2 Q33 —S
T11 _(D C)/z T22 = (D+ C)/z T33 _D’ S5 P5 D5
and Care given by equation (10 b). Comparing equations
(10a) and (11), we have a surface energy as a linear
combination of order parameters S, P, D, and C for the
arbitrary shaped molecule When A”—Amm the order
parameter matrix 0 = 0" and the system have only
two order parameters S and P. When Au# Amm, we
have two independent order parameter matrices Q
and T

When a, b, and ¢ are rotated away from ao, bo, and
co, in the ao, bo, co system, the order parameter matrices
become

05 =U,U;, 05", Tyj=U,U;TL (12)

where Ui, =e¢i" e, are glven by equatlons (1) and (2).
Here et =a, e2=Db, es=c, el =a0, e2 =ho, 0 = co.

Generally, since the surface energy is a function of 0"
and T, it can be expanded into Taylor series of @.s and
T,5. Keeping only the linear terms, and considering the
requirement (1), we have

Fo= V0 + WiT; (13)

where ¥V and W are the second rank tensor coeflicients.
Rewriting V' as

1
V= Vi)=VE + V(14

1
Vi + Vi) + 5

V=3

O . . (A
where V' is a symmetric matrix, v 1s anti- s;lmmet(rp})c
matrix. Similarly, we can write W = w' w
Substituting ¥ and W into equation (12), we have

Fo=VR05 + Vi 0 + WRTy; + Wi Ty;. (15)

Since le Qlj— - Vﬁ}“Qu— - Vﬁ}“Qﬂ we have le QlJ—O
Similarly W Tu = (. Therefore £ can be written as

Fo=V5 04+ W' Ty, (16)
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That means we can always choose two symmetric matrices
as coeflicient matrices. Dropping the superscripts and
bearing in mmd that V' and W are symmetric, we can
simply write £s = VJlQlJ + WiiTi;,

Subtractmg

(Vs Va2 4 V33)5i 0853 + (Wi + Waz + Wi3) 54 Tij /3 =)

from equation (16), we have

Fs= ( 2 kaéu)Qu + ( 2 VVkéu)
=05 + wi; T (17)

where ¥ and W are traceless tensors. Therefore there are
only five independent coeflicients for each matrix.
Substituting equation (12) into (17) we have

F= th ﬂQ;(;d + Wij Uiot UjﬂT:lB)' (18)

Since ' is a function of o, B, v and is invariant under
the operation of y >+ 7T (i.e. a— —a and b— —b),
poT=p, ao—>a+T, y>T =y (ie. a—> ~a, ¢ ~¢),
we have the off-diagonal elements of ¥ and W equal to
zero. Therefore there will be only two independent
elements for ¥ and two for W.

Note that when a, b, and ¢ coincide with ao, bo,
and co, respectively, the surface energy is linearly pro-
portional to the order parameters S P D and C,
as shown in equation (10a); we found that ao, bo, and
co are the three eigenvectors in which the symmetric
matrices ¥ and W are diagonalized.

3. The second form of surface energy
If we do not consider the influence of order para-
meters, we can form four independent rotational
invariants:

bOibOjbibja bOibOjCiCj, COiCOjbibj, CoiCojCiCj.
(19)

Using @idj = §ij = bibj = ¢ic;, aoidoj = §ij = boiboj = CoiCoj,
other rotational invariants such as @0ido;did;  doidojbib;,
aoidojcicj, boibojaiaj, coicojaiaj can all be expressed as
the linear combination of the four independent invariants
listed in expression (19). Obviously, cross terms such as
boicojbic;j do not satisfy the requirement (2) and therefore
should be disregarded.

FO —gi(h bo) + &0 bo) + 8 (b c0) +8gale 00)
(20)

In order to compare this form of surface energy with
that in §2, we write £ as

F;l) = 3(\111 Q(1)1 + W11 T11)+ [(V22 - Vll)(Q(Z)Z - Q(l)l)
+ (W22 = wi1)(Toz = T11)1(b- o)

4 [(v22 = vin)(Q5s - Q1)

4+ (w22 = wir)(Tss — T11) 1(¢: Bbo)

+ [(vss = vin)(Q22 - Q)

+ w3z = wi1)(To2 = T11) (b o)

+ [(33 = v10)(Q5s — Q1)

+ (wss = wi)(Tss = Ti1) (e eo) (21)

Here the superscript d in the Q" and T matrix is dropped.
Comparing equations (20) and (21), we find that if

g = (V22 = v11)(Q%2 — O%) + (w22 — wii ) (T2 — Tis)
g2 = (V22 = v11)(Q55 — Q1) + (w22 — w11 )(Ts3 — Ti)
gs = (v33 = v11)(0% — Q1) + (w33 — wir)(T22 — Tir)
ga = (v33 — v11)(Q%5 — Q1) + (w33 — w11 )(Ts3 — Ti1)
(22)

F and F W111 dlffer only by a constant. Notice
that in both Fs’ and F3” , there are four independent
coeflicients.

The surface energy can also be derived by expanding
it into a series of rotation matrices D{n/m(ocﬁy) given by
equations (6) and (7)

F = 2 2 2 Bm/mDm/m O{ﬁ'y) (23)

Jj=0m'==jm=—j

Neglecting all the higher terms of /23, we have the
expansion

Jj

_ 5 S S B

j=012 m=—j m=—j

x exp(— i) dwm( f) exp(— im). (24)

Under the operation of o >+ T (i.e.a— —a,b— —b)
and y—>y+ T, (ie. a0 > —ao, bo —» —bo), the surface
energy should be invariant. Therefore we have all the
cofficents of / = odd, M = odd, M = odd equal to zero.

Since Fs is real and invariant under operation of
/)’—>TE_,b’,oc—>oc+75,y—>ﬂ—y,(i.e.a0—> —ao, co — _CO),
we have

2 2 2 2
B—ZOIBZO, BO—Z:BOZ,

25
B, ,—B»—B0m—B_,. (25)
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Therefore £ is simplified as

F, = Boo P2(cos B+ BOZ cos 2o sin” p

ﬁBz .2
+ 75 P20 cos 2ysin f
+ B[ (cos’ B+ 1) cos 20 cos 2y
-2 cos p sin 2y sin 2y]- (26)

Meanwhile, according to equations (2) and (18), the
surface energy in terms of Euler angles is

(0d) (@)
Fi= 2 (vii UlJQ + Wii lJTJJ )

3
- 5(%35 + w33 D)Pa(cos p)

3

+ Z[S(Vll — V22) + D(M/ll - 1/1/22)] CcoS 2'); Sin2 ﬁ
3 2

- Z(vas + Cws3) sin” f cos 2a

1
+ 7 [P0 = v2z) + Clwn = w22)][(cos” p+ 1)
x cos 20, cos 2y — 2 cos f sin 2o sin 2y]- (27)

Comparing equation (26) with (27), we have

, 3
Boo = E(Vsss + w33 D),

6
B(2)2 = \{T[S(Vu - V22)+ D(Wu - sz)]

z (28)

. A6
By = — T(vaa + Cwss ),

1
Bgz = Z[P(Vu — V22) + Cwi — sz)].

When a=ao, b=bo, ¢ =co and for rod-like molecules,
equation (27) gives

3 1
FS:EV33S+E(VM —sz)P. (29)

If vit=va2 Fs= 3v3358/2, Tt has been suggested that, for
an unrubbed polymer coated substrate with no preferred
direction in the plane of the surface, the molecules of
the nematic liquid crystal may lie perpendicular to the

substrate normal, resulting in a uniaxial surface layer
with negative orientation order at temperatures above
the bulk nematic—isotropic phase transition [5]. This
corresponds to the situation where V33 > 0. This type of
ordering leads to the possibility of phase transition from
uniaxial to biaxial nematics near the surface as the tem-
perature decreases. If V22 = Vi1 #(, the surface provides
not only a mean field to align molecules perpendicular
to the surface normal, but also a biaxial field to produce
biaxiality.

Consider a liquid crystal confined between two parallel
plates where the upper and lower plates are at Z =0, d.
Suppose the easy axis of co is along the film normal and
a0, bo are in the plane of the film. When the film thickness
approaches infinity, the mid-plane directors will not be
influenced by the boundary conditions. Minimizing the
bulk elastic free energy in Landau—de Gennes form and
the surface energy given by equation (29), we get the
Euler-Lagrange equations for the order parameters S(2)
and P(2) where Z is the coordinate normal to the plane
of the film. Since the equations do not have analytic
solutions, we use trial functions S(Z; &, n), P(z; ¢ n) to
obtain the minimum free energy where &, are the
parameters to be optimized. The result shows that
the order parameter at the surface P(0) approaches
—35(0)(S(0)<0) for Vit —v22<0 and ¥33>0, when
either temperature decrease or the biaxial part of the
surface energy coeflicient [V11 — V22| increase. For details
of discussion and calculation see [9].

4. Possible experimental measurements of anchoring
strengths
When the rotation angles ¢a<1, gp<1, ¢pe<1, we
have
F;U ="V11 Q(1)1 + Va2 Q(z)z + V33 Q(3)3 +wit T  warTa
+ W33 Ts3 — [(sz - V33)(Q(2)2 - Q(s)a)
4+ (W22 — waz)(T2z — T33)]¢¢2:
- [(V33 - V11)(Q(3)3 - Q?l)
4+ (Waz — wi1 ) (T3 — T11)](j)i
- [(V11 - V22)(Q(1)1 - Q(z)z)
+ (w11 — wa2)(T11 — Tzz)]¢?~ (30)
In the small angle approximation, neglecting a con-
stant, equation (30) can be derived in the following
simple way. Suppose the rotation torque is linearly

proportional to the angular displacement vector, i.e.
L = Wagaao + Wegpbo + Wegeco: the energy stored in the
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final configuration of ¢a, ¢» and ¢c is

F =J L - (dgaao + dgpbo + dgeco)
1 2 1 2 1 2

This form is similar to that of Rapini—-Papoula and
therefore we call Wa, Wo and We the biaxial anchoring
strengths. The relation between Wa, Wo, We and Vi, Wii,
O, Tii (i=1, 2, 3) can be easily obtained by comparing
equations (30) and (31).

Consider a biaxial nematic confined between two
parallel plates at Z= td At the upper and lower
boundaries, assume the easy axes a0 =x, bo=y, co=1z.
When a magnetic field H = Hx is applied and exceeds a
certain threshold value, there will be a Fréedericksz
transition. According to Saupe [8], the elastic energy
density of biaxial nematics is

1 2 2
Fezazp{Kau[c' (@ VBT + Kus[ b (a* Va)l

+Kaele (@ V)l +2Cwlax Vxa) (bx V x b)

+2K0aV- (a- Va—aV- a)} (32)

where the summation over ¢ has three terms correspond-
ing to the cyclic permutation of 4, b, and ¢. For example,
Zaf(a,bey=fla b oy+ f(b,c ay+ f(c ab). Ku, Kp,
K. terms describe the directors b and ¢, ¢ and a, a and
b rotating around a, b and ¢ respectively. Kay, Kac, K,
Kba, Ko and Keov terms describe six simple distortion
patterns of bend and splay. Cab, Che, Cea are the coupling
terms with Koa, Kos, Koc contribute to the surface energy.
The external field energy density is

1
Foom =5 Y u(H 2’ (33)

where yaa, ybb, yec are the three diagonal element of
magnetic susceptibility. For the sake of definiteness, we
assume ycc > ybb > yaa. The surface energy density at
small angle approximation is given by equation (31).
Therefore the total energy is

F:J(F9+Fex)dr+JFst. (34)

At the vicinity of the lowest threshold field of
Fréedericksz transition, the Euler—Lagrange equation is

linearized as
Kbepazz + AX“’Hsz)a -0
Kb ppzz =0
Kpagpezz = Aypa H pe = 0
(£ Ksepaz + Wagpa)z=1a=0
(£ Kb oz + Wogp)z=+a=0
(£ Kvagpez + Wegpe)z=+a =0

Solving the equations, we obtain a transcendental
equation from which the threshold field for the
Fréedericksz transition can be found:

W,d
htanh = (36)

where h = (A;{cb/Kbc)l/sz, Ayeb = yee = yov. If the elastic
constant Kse can be measured (for the possible experi-
mental measurements of fifteen elastic constants of
biaxial nematics, see [10]), the value of W can be
determined if hF, the threshold field for Fréedericksz
transition is measured.

Similarly, consider the geometry where ao= ~y,
bo= —z co= —x, H=Hy. Then the differential equa-
tions and boundary conditions are

Kbu¢czz + Axbqud)c =0
Kbb¢bzz + AXcasz)b =0

37
(iKbu(l)cz-i- VVc(l)z)z:id:O ( )
(+ Kbb¢bz + VVbq’)b)z: +a=0.
The transcendental equations are
h h Wed h h Wed
1tan 1 = Ko’ 2 tan 12 = Koy (38)

where /1 = (A;{bu/l(bu)l/zI‘Id5 hy = (A;{ca/l(bb)l/zl‘ld5
Axbu = Xbb - Yaa, AXca = Yec - Yaa. If I(bu5 I(bb5 Axbu and
Ayea are known, then by measuring the threshold field
of the Fréedericksz transition, we can determine either
We or We, depending on which threshold field is lower.

5. Summary

In the present paper, we derive a form of surface
energy for biaxial nematics. The method is similar to
those used in deriving Landau elastic energy for bulk
nematics and Frank elastic energy. The same surface
energy can also be derived by rotation matrix expansion.
The result shows that there are four independent
coefficients in the surface energy. One application of
surface energy when each of the three directors is along
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its corresponding easy axis is briefly mentioned, and
possible experimental measurements of three linear com-
binations of four coeflicients, i.e. the anchoring strengths
in small angle approximation, is explored.
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